4.11.2 Scale Factor Studies

j. guimarães da costa, a. holloway, d. sherman, s. rappoccio

effect of recent cuts

effect of slight changes to method

effect of gross changes to method

Samples

We use the same initial datasets as TomW and HenriB:

- SecVtx from this summer (blessed)
- 4.11.2 reprocessing → TopNtuples
- "Top/EWK Version 4" good runs: Ele, Silicon, Muon

Not identical (crashed jobs...)

Sample	dataset	N(events) before cuts
New Electron MC	btop2a	507779
8 GeV Electron Data	b2t120,b2t140	1799511

Event/Object Selection: Common cuts

.: Electron selection

- $E_T > 9.0 \; \text{GeV}$
- $0.5 < \frac{E}{P} < 2.0$, $\frac{\text{had}}{\text{em}} < 0.05$
- $L_{\rm shr} < 0.2$
- $|\Delta x_{\rm CES}| < 3$ cm, $|\Delta z_{\rm CES}| < 5$ cm, $\chi^2_{\rm CES\ strip} < 10$
- $|z_{\rm e} z_0| < 5 \, {\rm cm}$
- |sol| > 0.1

.: Object selection

- Highest E_T electron
- Nearest e-jet with $\delta R_{\text{e-jet,e}} < 0.4$
- $\delta\phi_{\text{e-jet,a-jet}} > 2.0$
- \bullet $|\eta_{\text{a-jet}}| < 1.5$
- Conversions: $\delta \cot(\theta) < 0.04$, $d_{xy} < 0.2$ cm

Event/Object Selection: Different cuts

Quantity	Blessed + Trigger	HenriB	TomW (Jan16)
Electron p_T	4.5 GeV	8.0 GeV	9.0 GeV $(E_T > 12)$
Electron track		SVX fiducial	
$E ext{-jet}\;E_T$	10 GeV	15 GeV (Level4)	10 GeV
A-jet E_T	12 GeV	15 GeV (Level4)	12 GeV
Which A-jet?	Highest δ_ϕ	Highest E_T $\stackrel{'}{}$	Highest δ_ϕ

With these three sets of cuts:

- we compared distributions in data and simulated events
- ullet we measured a (SF) to check consistency

Data/MC Comparisons

"HenriB" cuts with the trigger simulation:

but how much agreement do we expect?

- Untagged distributions: $\overline{F_{\rm MC}}^H \sim 0.85~{\rm but}~\overline{F}^H \sim 0.2$
- Electron characteristics: $\frac{\overline{N_{\rm conv}}}{|N|} + \overline{F}^H \sim 0.5 \Rightarrow$ electrons from $(\pi^{\pm} \text{ fakes,Drell-Yan...})$

The important thing for a useful (SF) is to get $\frac{\overline{F}^b}{\overline{F}^H}$ correct.

Data/MC Comparisons: continued

An important thing for a $(SF) \sim 1$ is to get silicon hits correct:

ullet $N_{
m trk}$ agrees better than $N_{
m good}$

Changes to (SF) Measurement

The well-known blessed efficiency formula (condensed):

$$\delta^{H} \equiv (\epsilon^{+H} - \epsilon^{+L}) \simeq \frac{[N]_{+}^{+} - [N]_{-}^{-} - [N]_{-}^{+} + [N]_{-}^{-}}{([N]_{+} - [N]_{-}) - (1 - [F]_{-}^{H})[N](X)}$$

- ullet We're neglecting the L_{xy} asymmetry in light-flavor tags for now.
- I'm hiding the fraction of light flavor electron jets that have tagged, heavy flavor away jets under "X." This is what we measure in Run II with conversions.
- X has changed to account for conversions in HF jets the details will be documented 1 .

The tradeoff: now conversion finding and tagging are assumed independent.

$$^{1}\text{We use }X = \frac{(C^{+} - C^{-})(\boxed{N}_{+} - \boxed{N}_{-}) - (C_{+} - C_{-})(\boxed{N}^{+} - \boxed{N}^{-})}{(C^{+} - C^{-})N - C(\boxed{N}^{+} - \boxed{N}^{-})} \text{ where } C^{i}_{j} \equiv (\boxed{N_{\text{conv}}}^{i}_{j} - \epsilon^{0} \boxed{N}^{i}_{j}) \text{: in the summer, } (C^{+} - C^{-}) \rightarrow 0.$$

Mostly Summer Method

Measuring the efficiency in order to get (SF) has drawbacks:

• It depends on \overline{F}^H (measured with D^0 reconstruction).

Instead, let's eliminate \overline{F}^H using (SF).

For interested parties:

$$\overline{F}^{H} = \frac{(\overline{N}^{+} - \overline{N}^{-})}{\overline{N}\delta^{H}} = \frac{(\overline{N}^{+} - \overline{N}^{-})}{\overline{N}\left((SF) \times \delta^{H}_{MC;ST}\right)}$$

The result² is a measurement of (SF) – you have to multiply by $\delta^H_{MC;DT}$ from "truth" info if you need the double-tag efficiency.

$$\delta^{H} = \frac{N_{+}^{+} - N_{-}^{-} - N_{-}^{+} + N_{-}^{-}}{N_{+}^{-} - N_{-}^{-} + N(1 - \frac{(N_{-}^{+} - N_{-}^{-})}{N((SF) \times \delta_{MC;ST}^{H})})(X)},$$

so

$$(SF) = \frac{\frac{(N_{+}^{+} - N_{-}^{-} - N_{-}^{+} + N_{-}^{-})}{\delta_{MC;DT}^{H}} - (X) \frac{(N_{-}^{+} - N_{-}^{-})}{\delta_{MC;ST}^{H}}}{[N_{+}^{-} - N_{-}^{-} - N_{-}^{-}]}$$

It's important to distinguish the MC single and double tag efficiencies $\delta^H_{MC:ST}$ and $\delta^H_{MC:DT}$ – they aren't the same.

²The next steps are simple substitution:

Results: Mostly Summer Method

So, using the same cuts but different algebra:

U H H , X			
Talk	$ F ^H$	δ^H	(SF) (stat errors)
HenriB (01/30)	0.223	25.1%	.854±.020±0.058
TomW (01/30)	0.291	22.4%	$.892 \pm .020 \pm 0.054$
1 2 0 1	0.241	21.3%	$.766 \pm .021 \pm .070$
HB cuts $(02/13)$	0.230	23.5%	$.784 \pm .023 \pm .082$
TW-tight cuts $(02/13)$	0.209	22.7%	$.835 {\pm} .030 {\pm} .104$

We have a little more data (?) but a lot less MC – MC statistical errors dominate.

Fit-based Method

- We can't escape the assumption that e-jet tag efficiency is completely uncorrelated with a-jet characteristics, but we no longer assume
 - that the efficiency to tag the e-jet and the efficiency to find a conversion in it are uncorrelated
 - that Run 151435 represents the geometric correlations of double-tags accurately, or
 - that light flavor tags are (equal/proportional) to negative L_{xy} tags.

This leads to the **simple** model:

$$\frac{N_{\text{sample}}^{H}}{N_{\text{sample}}} = (\epsilon^{+})^{L} F_{\text{sample}}^{L} + (\epsilon^{+})^{H} F_{\text{sample}}^{H}$$

$$\frac{N_{\text{sample}}^{L}}{N_{\text{sample}}} = (\epsilon^{-})^{L} F_{\text{sample}}^{L} + (\epsilon^{-})^{H} F_{\text{sample}}^{H}$$

$$1 = F_{\text{sample}}^{L} + F_{\text{sample}}^{H}$$

Results: New Method

We fit to this model with many subsamples of the data, divided based on the away-jet characteristics:

no 7 GeV electron, $N_{\rm trk} \leq 5$	no 7 GeV electron, $N_{\rm trk} >$ 5
7 GeV electron, $N_{\rm trk} \leq$ 5	7 GeV electron, $N_{\rm trk}$ $>$ 5

We're trading statistical power for a grasp on systematics.

	ϵ^+	ϵ^-	F^H
Data:	$21.55 \pm 0.03\%$	$0.89 \pm 0.07\%$	$.218 \pm .009\%$
MC:	24.75 ± 8.16	$0.25 \pm 0.42\%$.84±.15
(truth):	24.62± 0.73	$0.56 \pm 0.11\%$.858±.012

With fit values, (SF)= 0.84 with large errors from MC statistics. Using truth, $(SF)=0.859\pm0.055$

Conclusions

- ullet Hints that (SF) varies with electron p_T cuts.
- We get $(SF) = .784 \pm .085$ (stat) with HenriB(Jan30) cuts and a modified method.
- Monte Carlo statistical uncertainty should improve shortly.
- \bullet Systematic on $\overline{F}^b/\overline{F}^c$ is important not completely accounted for with $\sigma_{\overline{F}}^H$.
- ullet We're studying systematics with a χ^2 -based fit method too -
 - Preliminary Single tag (SF) (with respect to truth) \sim .86 \pm .05 with reasonable \overline{F}^H .
 - (This is really pushing the small MC dataset we have)
 - Next: goodness-of-fit studies...